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The behaviour of a turbulent boundary layer 
near separation 

By A. A. TOWNSEND 
Emmanuel College, Cambridge 

(Received 25 November 1961) 

Stratford’s method of computing the development of a turbulent boundary layer 
in a strong adverse pressure gradient, based on division of the layer into an inner 
equilibrium layer and an outer layer of almost constant total-head, is simple and 
is based on current knowledge of the properties of turbulent flows, but the corre- 
spondence with experiment is worse than would be expected. The causes of this 
are investigated, first by testing the basic assumptions against the measurements 
of Schubauer & Klebanoff and then by calculating from the theory properties 
of the layer at intermediate stages of the development towards separation. It is 
shown that the theoretical condition for zero wall stress (a relation between 
pressure rise and pressure gradient) is always satisfied twice, first at  an inter- 
mediate stage of development with wall stress about one-fifth of the initial value 
and second at  the real position of zero stress. This behaviour involves a rapid 
decrease of pressure gradient in the neighbourhood of separation, caused by rapid 
thickening of the layer, and it is shown that the pressure distribution near 
separation depends only on the pressure rise to separation and the characteristics 
of the initial boundary layer and not on the geometry of the flow. With more 
measurements of boundary layers separating in strong adverse pressure gradients, 
these characteristic distributions could be determined as a one-parameter family. 
Their use for the prediction of position and pressure rise to separation in flows 
with specified boundaries without prior knowledge of the pressure distribution 
is discussed. 

1. Introduction 
The development of a turbulent boundary layer in an adverse pressure 

gradient is a problem that has received much attention, but most attempts have 
started with the equation for the overall momentum balance in the layer and then 
proceed to make empirical assumptions about the form of the velocity distribu- 
tions. In  recent years these assumptions have become more realistic, particularly 
by using the ‘law of the wall’ for the inner layer, and the ability to predict 
the position of separation in a specified pressure distribution is good, but the 
assumptions are not approximations that become exact in relevant limiting 
conditions. A theory satisfying this last requirement has been proposed by 
Stratford (1959) who points out that the flow close to the wall is determined by 
the local stress distribution and is otherwise independent of the past history of 
the layer, while the outer part of the flow develops nearly independently of the 
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Reynolds stresses if the adverse pressure gradient is large. If the whole layer at  
any stage of the development is adequately described by combining an inner 
layer of structure determined by the local stress distribution with an outer layer 
on which Reynolds stresses have had no appreciable effect, comparatively simple 
equations can be obtained giving the layer characteristics as functions of the 
pressure rise, the local pressure gradient and the initial characteristics of the 
layer. In  particular, they lead to a criterion for zero wall stress in the form of a 
relation between pressure rise and pressure gradient that must be satisfied. 
Although some details of the original formulation need amendment (Townsend 
1960), the basic assumptions of the theory are so plausible and in keeping with 
current knowledge of the properties of turbulent flows that it is surprising to find 
comparatively poor agreement between the observed and predicted pressure 
rises at flow separation. For example, in the separating boundary layer studied 
by Schubauer & Klebanoff (1951), the zero-stress criterion is satisfied for a 
pressure recovery coefficient of 0.38t but the layer does not separate until a 
coefficient of 0.51 is reached. 

In  this paper, some experimental evidence for the validity of the basic assump- 
tions of the theory is described with the object of justifying its description of 
intermediate stages of the development towards zero stress and flow separation. 
From the theoretical analysis it appears that the zero-stress criterion is always 
satisfied for two values of the pressure rise, first at an intermediate stage with 
finite wall stress and then at  the real separation point. This phenomenon requires 
a considerable weakening of the adverse pressure gradient as the layer approaches 
separation, and the implications are discussed in relation to the problem of flow 
separation in a system with given boundaries but undetermined distribution 
of pressure. 

2. Basic assumptions 
We consider a turbulent boundary layer on a plane surface with two-dimen- 

sional mean flow and developing in a known adverse pressure gradient. The flow 
is described in the usual co-ordinates with Ox along the surface and in the direc- 
tion of mean flow and Oy normal to the surface. At the position x = xo, the 
pressure$ is a minimum Po and, for larger values of x, it increases rapidly until 
the layer separates. At the pressure minimum, the equilibrium layer is nearly 
one of constant stress and the velocity distribution over the inner fifth of the 
total layer thickness is described by the logarithmic ‘law of the wall’, 

u= - log-+A 
K 7T Tv 1 

t Not 0.42 as in an earlier paper (Townsend 1960) which used y = 0.075 instead of the 
correct value, 0.083 (see $4). Stratford (1959) gives C , ,  = 0.44, but his form of the theory 
uses different junction conditions. 

$ Pressures and stresses are ‘kinematic’, i.e. the mechanical values divided by the 
fluid density. 
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where Uo is the free-stream velocity at x = xo, 
70 is the wall stress at x = xo, 
Y = ~ & ( K u ~ ) ,  
7 = YP07 
8, = v / T 8  exp (y-1- A ) ,  
Y is the kinematic viscosity, 
K 
A 

is the Karman constant ( =  0.41), 
is an additive constant (= 2.3). 

If the adverse pressure gradient is large compared with the stress gradients in 
the layer at  the pressure minimum, the rates of energy production and dissipa- 
tion in the outer parts of the flow are too slow to modify appreciably the original 
Reynolds stresses and these will be nearly unchanged along streamlines. Then 
the gradients of Reynolds stresses will be diminished by the flow expansion and 
they can cause no appreciable changes in total-head along streamlines in the 
outer fl0w.t In  symbols, if 

dP/dx 9 70/& 

and 7 = d$), 
where P is the local pressure, 

U, is the local free-stream velocity, 

$ = s” U,(y’) dy’ is the stream function. 
0 

In  the inner part of the layer the rates of production and dissipation of turbulent 
energy are large enough to modify considerably the Reynolds stresses, and 
neither Reynolds stress nor total head is expected to remain constant along 
streamlines; but if these rates are also large compared with the rate of energy 
gain by advection, the inner layer is nearly an equilibrium layer (Townsend 1961). 
Then the velocity distribution is determined by the local distribution of stress 
through the relation 

(2.4) 
Y aY - -?b(l-B;lyl), KY 

where 7 is the local shear stress, and B is an absolute constant (=  0.18). 
The whole layer is now considered to be composed of two distinct but adjacent 

parts, an inner equilibrium layer and an outer layer with constant total-head 
and Reynolds stress along streamlines, the position of the junction being deter- 
mined by requiring continuity of mean velocity and of Reynolds stress (Town- 
send 1960). Assuming the stress distribution in the equilibrium layer to be nearly 
linear, i.e. 

7 = 71+CCy, 

it  becomes possible to calculate the boundary-layer characteristics as functions 
of the pressure coefficient, CD = (P-Po)/$U& dC,/dx, and the parameters 
describing the layer at  the pressure minimum. 

t Stratford (1959) made an allowance for change of head by the original Reynolds 
stresses. 
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Reasons for believing that this procedure should give an approximate descrip- 
tion of the behaviour of the layer have been given before in some detail (Stratford 
1959; Townsend 1960), but it is instructive to compare the assumed behaviour 
with the behaviour of the turbulent layer studied in detail by Schubauer & 
Klebanoff (1951). In  this layer, the effective Reynolds number at the pressure 
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FIGURE 1. Variation of total-head along streamlines in a separating boundary layer 
(Schubauer & Klebanoff 1951). (N.B. change of horizontal scale a t  $/U0 = 0.3 in.) 

minimum was 14.3 x los and the ratio (T~/~~)/(CEP/~X) about 0.07, indicating 
a sufficiently strong pressure gradient for application of the theory. For our 
present purposes, the essential assumptions are : 

(i) Total head is conserved between zo and x on the streamline passing 
through the junction of the two layers at the position x. 

(ii) Reynolds stress is constant along the same streamline. 
(iii) The stress distribution in the inner layer is nearly linear. 
(iv) The velocity distribution in the inner layer can be found by integration 

of equation (2.4). 
(v) Mean velocity and Reynolds stress are continuous across the junction of 

the two layers. 
In  figure 1, the variation of total head along streamlines is displayed by 

plotting ( UZ, - U2) /  77: against Ucl $ at different stages of development towards 
separation. As would be expected, gains of total head occur in the equilibrium 
layer for Ugl$ less than 0.1 in. and there are appreciable losses in the outermost 
layers, but the changes are very small in the range, 0.15 to 0*3in, where the 
junction points occur. It may appear singular that total head is conserved most 
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accurately along streamlines through junction points, but in fact these points 
in the theoretical flow correspond to stress maxima in the real flow and so, 
locally, are positions where the rate of change of total head is zero. 

The degree of conservation of Reynolds stress is shown in figure 2 by plotting 
the stress coefficient,? C, = r/$U& against U,-l@. The same features appear, 
strongly modified distributions near the wall and nearly unchanged distributions 
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FIGURE 2. Variation of Reynolds stress along streamlines in a 
separating boundary layer (Schubauer & Klebanoff 1951). 

in the outer parts of the flow. Linearity of the stress distribution may be con- 
firmed from these same measurements (figure 3) or indirectly by comparing the 
observed velocity distributions with the forms found by substituting the linear 
stress distribution (2.5) in equation (2.4). For a smooth surface with rflav > 20, 

t The measured values of Schubauer & Klebanoff are about 50 yo greater than the real 
ones, but relative values seem trustworthy except close to separation. 
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and this distribution, first obtained by Szablewski (1954) for B = 0, has been 
verified in some detail by Szablewski (1960) and, for the special case ay + T ~ ,  

by Townsend (1961). 
Validity of the junction conditions-continuity of mean velocity and Reynolds 

stress-is more difficult to establish from observations so that comparison of 
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FIGURE 3. Distributions of Reynolds stress in a separating boundary 
layer (Schubauer & Klebanoff 1981). 

observation with deductions from the theory provides the best confirmation. 
In his original paper, Stratford used continuity of mean velocity and mean velo- 
city gradient as junction conditions, but velocity gradient decreases with distance 
from the wall in both layers so that continuity of gradient a t  the junction prevents 
the appearance of the characteristic point of inflexion in the velocity profile. 
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Examination of the profiles shows clearly the necessity for a considerable dis- 
continuity in gradient between the distributions appropriate to the two layers 
(figure 4). 

(I 
(I' 

0 6  1 
I i 0' 

/ 1 .  
# 5 s l  0' 

0 4  

0.2 

x=25.0ft .  

x=2577ft .  

I I I I 
2 4 6 8 

Y (in.) 

FIGURE 4. Distributions of mean velocity in a separating boundary layer (Schubauer 
& Klebanoff 1951), showing inner (parabolic) and outer distributions. 

3. Development of the boundary layer 
In  a strong adverse pressure gradient, the stress at the wall decreases steadily 

from its initial value, To, to zero at the position of flow separation, and it is natural, 
as well as convenient, to seek a condition that the wall stress should have fallen 
to a fraction, t 2 ,  of its initial value, i.e. 

At this section of the flow, the junction between the two layers is a t  (x, y,) where 
the conditions of stress continuity and conservation of stress along the streamline 
through (x, y,) require that 
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(this streamline is assumed to lie within the constant stress layer at x = xo). 
At the junction, from equation (2.6) and using this result, 

2t B ] .  (3.3) 
2 2 - t - 4t2 

(1-B)-- 
l + t  

The streamline through (z, y,) passes through (xo, yoS0) if 

$8 = UO 70 So( 1 - Y + Y 1% 70) 

P,++u:(1+ylogqo)2 = P+&U,", 

(3.4) 
and the condition of constant total-head along this streamline is that 

i.e. 

(3.5) 

The equations (3.4) and (3.5) determine the wall stress as a function of the 
pressure rise and the stress gradient, a. 

First consider the solution of these equations for not too small values of the 
stress ratio t2. Equation (3.4) may be put in the form 

t ( l  - t 2 )  v 78 
qo(log T o  + 7-1 - 1) = ~ __ - 

K y  UoGoau 

[ ( 4t3( 1 - t) 7;) 2 2 - t - 4t2 (l--B)-----B] 2t (3.6) x log ~- + A + - - -  
l + t  au 3 t ( l + t )  l + t  

and an approximate solution is 

valid for large values of log ( ~ t / a v ) .  A closer approximation can be obtained by 
iteration. It is 

where 

and the approximation is a good one if 
8 

F(t) log7-?-. aV (3.8) 

If log $/av is more than four, this restricts t to the range 0.2 to 1.0. Substituting 
(3.7) in equation (3.5) and using the relation 8, = w&i exp (7-l - A ) ,  
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a relation between Cp/y2, log (7$/av) and the stress ratio t 2 ,  approximately true if 
t exceeds 0-2. 

For very small values of t,t the two equations become 

and 

The second term in (3.11) is fairly small compared with the first and can be 
replaced by 4(1 -B)2  without serious error if t is less than 0.1, and then 

log 4t3 + A  cp + 4( 1 - B)2)  a + log [ 6 + 4( 1 - B)z) ' - 11 - A - log $( 1 - B)  - -- ___ 

3 t  
1+------  

4 1 - B  

$ ( I - B )  
log- = 

aV 

(3.12) 
At the position of zero wall stress, t = 0 and there 

Both approximate equations, (3.9) and (3.12), indicate that log (av/7;) decreases 
nearly linearly with C$y for a constant stress ratio, but in the medium stress 
approximation a,/,: increases with (1 - t)  for constant C,/y2 while it decreases 
in the small stress approximation (3.12). For consistency of the two approxi- 
mations, av/7$ should reach a maximum with respect to variation of t near 
t = 0.2, and this is confirmed by figure 5 which shows the variation of C,/y2 with 
t for several values of log ( a v / ~ i ) ,  computed from the two approximate equations. 
The curves, which have been drawn to give a smooth transition from the exact 
values at t = 0 to the medium-stress approximation, have maxima near t = 0.2 
and, since C, and (1 - t )  both increase steadily as the layer develops, it follows 
that r2(d/clC,) log (av/$) is not only positive near zero stress but is larger than 
the value for continuously zero stress. In  other words, the stress gradient just 
upstream of the position of zero stress is more than enough to satisfy the zero- 
stress criterion (3.13) and, as the stress gradient so defined becomes extremely 
large for small values of Cp/y2, the zero-stress criterion is also satisfied for a value 
of C,/y2 smaller than that at  zero stress. At  this position, the wall stress is not 
zero but perhaps one-fifth of the initial stress (t = 0.3-0.45). Figure 6 shows the 
relation between log (avj7:) and C, y-2 for the condition of zero stress and for 
the condition of maximum C;, y-2 in a fixed stress gradient (nearly for t = 0.2). 
If  the variation of stress gradient with pressure rise is plotted on this diagram, 
the resulting curve intersects the zero-stress curve from below as the pressure 

f A condition for the validity of the velocity distribution (2.6) is that a region of fully 
turbulent flow and nearly constant stress exists, i.e. that T ~ / ( C X V )  > 20. At ordinary Rey- 
nolds numbers, this is possible only if t exceeds 0.1, but fortunately equation (3.13) for 
zero wall stress is accurate and equation (3.12) is a qualitative guide to layer behaviour 
for t less than 0.1. 
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increases, touches the curve of maximum C, and then intersects again the 
zero-stress curve but this time from above. Only the second intersection implies 
zero wall stress and presumably separation of the boundary layer. 

1 0.6 0.8 
OO 02 04 

t 

FIGURE 5 .  Calculated dependence of pressure rise on friction 
ratio and stress gradient at the wall. 

4. The relation between stress gradient and pressure gradient 
The adverse pressure gradient, which does not appear in the previous analysis, 

is related to the stress gradient and the flow acceleration by the equation of 

DU au au aP a7 

Dt ax ay ax ay, 

mean motion, 
---=u--+-v--=--+- 

and it is tempting to argue that the two gradients must be nearly equal within 
the equilibrium layer because the stream velocity is small close to the wall. 
This argument, though certainly valid sufficiently close to the wall, is irrelevant 
for the present purpose. The ‘ constant’ stress gradient, a, appears essentially 
as an average value over the whole of the equilibrium layer, and the assumption 
that flow accelerations are negligible within the whole layer does not survive 
either theoretical or experimental examination. For example, the information 

35 Fluid Mech. 12 
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given in figure 1 is sufficient to compute the accelerations along the streamlines. 
At x = 22*5ft., the streamline @Ugl = 0.05in. lies deep in the equilibrium 
layer and the acceleration along it is nearly - O-OISU~ft.-l. At the same position, 
the pressure gradient is 0.036Ugft.-l, twice as much. 

A more general demonstration of the inequality of the pressure and stress 
gradients depends on computing from the foregoing theory the flow acceleration 
a t  the outer edge of the equilibrium layer. Starting with the velocity distribution 
(2.6), it  may be shown that the flow acceleration there is 

where 

(4.2) 
au 

d x =log-, 70 

av 

4t3( 1 - t )  +X+A+Z(;- l )  (1-B))  

x 

1 + 2(1 -B)  (4t2- 2t- 1)  - 4 B ( l - ~ t 2 )  

and b ( t , X )  = t2 

4t3( 1 - t )  + X + A + l )  

+ $( 1 -B)  ( 2  - 3t - 3t2f 4t3) - 2Bt2( 1 - t )  . 1 
Using this acceleration to compute the stress gradient at  the edge of the layer 
and identifying this gradient with a, 

(4.3) 

Taken with the solution of the basic equations (3.4) and (3.5), which is of the form 

C , ~ I - ~  = fn. ( X ,  t ) ,  (4.4) 

we have a first-order differential equation for X which could be solved for any 
particular pressure distribution. Some characteristics of the solutions can be 
established for the intermediate stages of development by differentiating the 
approximate solution (3.9) with respect to 2. Then 

dP 70 at ax 
- = -  c-+a- , 
ax K2( ax a x )  (4.5) 
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where 
1 - 3t2 

c(t, X )  = ( X  + A  +logt( 1 - t 2 )  +F( t )  X-1) 

+ 2( 1 - t )  (1  - B)  X+A+log- 

2t 
+3---2(1-B) X+A+log- 

4t3( 1 - t )  
l + t  

4t3( 1 - t )  
l + t  1-t2 

d ( t , X )  = ( X + A + l o g t ( l  - tZ)+F(t)X-l)  (1-F(t)X-2)  

-t2 
l + t  

Defining q = cr/(dP/dx) and eliminating dP/dx from equations (4.3) and ( 4 4 ,  
we find that ax (1-q )c -a  - - ~- - 

dt b - ( l - q ) d '  

For large values of [ X  + A  +log {4t3( 1 - t ) } / (  1 + t ) ]  and not too small values of t ,  
the coefficients are nearly 

a ( t , X )  = t  X+A+log---- 4ty  i; 4) 2 , ( 

4t3( 1 - t )  
l + t  

d ( t , X )  = (1-t2) X+A+log- 

- and so 
ax -qt  X+A+log--- ( 4t3(1 l + t  - "'1 _ -  - 
at t 2 -  t( 1 - t 2 )  + Bt( 1 - t2)2- ( 1  - q )  ( 1  - t2) 

J 

Since t and q are positive and less than one, dX/dt  is positive if t is less than 0.57, 
and may be positive for 0.57 < t < 0-80 if q is small enough. Positive values of 
dX/dt  mean positive values of daldx and so stress gradient increases during the 
intermediate part of the layer development. 

If t is less than 0.2, the approximations set out above for the coefficients 
become inaccurate. For small values of t and large values of ( X  + A  +log 4t3) 
the coefficients are nearly 

(4.9) 

35-2 

I a(t, X) = - ( X  + A +log 4t3) [l  - B - t ( X  + A  +log 4t3)], 

c ( t ,  X) M +(X + A +log 4t3), 

d ( t , X )  z (X+A+log4t3) .  

b ( t , X )  = - ( l - B ) [ % ( l - B ) + t ( X + A  +log4t3)], 
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The expressions for c(t,  X )  and d( t ,  X )  have been inferred from figure 5 and their 
only important features are the signs and the orders of magnitude. Using these 
in equation (4.6), 

(4.10) 
d X  
at 

[&(1- q)  + 1 - B - t ( X  + A  +log 4P)] ( X +  A +log 4t3) 
f (  1 - B)2 + ( X  + A + log 4 3 )  (t( 1 - B )  + 1 - q)  

- = -  

and becomes negative for small values oft. 
These arguments show that a layer satisfying the requirements of the theory 

develops with increasing stress gradient while the wall stress is comparable with 
its initial value and with decreasing gradient when the wall stress is small. This 
behaviour is fully consistent with the hypothesis that the two gradients of 
Reynolds stress and of pressure approach equality at the position of zero wall 
stress, i.e. q = 1, and this is supported by the measurements of Schubauer & 
Klebanoff. Substitution of plausible values in equation (4.8) shows that the 
increase of stress gradient during the development is substantial, whatever the 
variation of pressure gradient, and in general the two gradients are neither equal 
nor proportional. 

If the stress gradient and the pressure gradient do become equaI a t  separation, 
the zero-stress criterion (3.13) can be put in terms of the more easily measurable 
pressure gradient, 

(4.11) 

To compare this prediction with the observations of Schubauer & Klebanoff 
(1951), figure 6 shows a full line representing this criterion and points repre- 
senting the experimental values of C, and d P / d x .  There are two intersections and 
the one with the larger pressure rise corresponds almost exactly with the observed 
position of flow separation at  x = 25-7 - 25-8 ft. The agreement depends weakly 
on the values chosen for the absolute constants, A ,  B, K ,  but more critically on 
the initial friction parameter, y = .$/KU,. The value used, 0.083, is the value 
appropriate to the effective, flat-plate Reynoldsnumber at  the pressure minimum, 
14.3 x 106, and agrees with the measured slope of a semi-logarithmic plot of the 
velocity profile at  the minimum and the relation 

(4.12) 

The broken line in figure 6 represents the largest stress gradients possible for 
a given C, during development to separation, and it will be noticed that some 
of the points lie above this line. Since the flow accelerations are always negative, 
stress gradients are alwa.ys less than pressure gradients, and this behaviour is 
consistent with the theory if the stress gradients in this region are one-third less 
than the pressure gradients. If, consistently with the proposition that stress 
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gradient increases during medium-stress development, the gradient ratio q is 
about 0.5 for somewhat smaller values of C, Y - ~ ,  the first intersection of the stress- 
gradient curve (log (av/ri) vs. C, Y - ~ )  with the critical curve is at  

CrV x = 23*5ft., log- - -7.5, C,y-' = 60, C, = 0.38, 
7: - 

equivalent to t = 0-43. The wall stress calculated from the observed velocity 
distribution at x = 23.5ft. gives t = 0.40, in satisfactory agreement. 

r 1 
I I I I I I I I I 

-lolo ' 50 60 70 80 90 

Y-2c, 
FIGURE 6. Comparison of zero-stress prediction (equation (4.11)) with measurements of 
Schubauer & Klebanoff (1951). The numbers alongside the experimental points are the 
downstream positions in feet, the full line is the zero-stress condition and the broken line 
gives the maximum possible values of log ( a v / ~ i ) .  

The second intersection is at 

av 
4 

7 0  

X = 25*8ft., log- = -8.5, C,Y-~ = 74.5, C, = 0.51 

and corresponds closely with the observed position of separation. 

5. The pressure distribution near separation 
The development of the boundary layer has been discussed so far with the 

implicit assumption that the pressure distribution is predetermined and forms 
part of the specification of the flow, but the necessity for a rapid decrease in 
pressure gradient as the position of zero stress is approached means that the 
pressure distribution in this region is not completely arbitrary. Measurements 
in separating flows show that the total decrease in gradient before separation is 
large, so that the statement, 'Separation takes place when the pressure gradient 
has fallen to one-fifth of its average value ', could replace the theoretical criterion 
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without appreciable error. This suggests that the pressure distribution near the 
point of separation may be characteristic of the phenomenon of separation and 
that inclusion of it in the specification of the flow is equivalent to being told the 
position of separation. If the prediction of separation is to be more than a demon- 
stration of the self-consistency of the theoretical assumptions, details of the 
pressure distribution should not form part of the initial data. Fortunately, the 
rapid weakening of the gradient is confined to a comparatively small region 
around the separation point, where the rate of increase of boundary-layer thick- 
ness is large. For example, in the layer studied by Schubauer & Klebanoff, the 
pressure gradient is nearly constant from just past the pressure minimum at 
xo = 17.5 ft. to x = 23.5-24-0 ft. (C, = 0.41-0.44), and then thegradient decreases 
rapidly with separation occurring at  x = 25.7-25-8ft. (C' = 0-51). The small 
range permits a useful distinction between the effects on the pressure distribution 
of the flow separation and of the layer thickening. 

The speculation that the pressure distribution near the separation point has 
a characteristic form which is independent of the particular flow system can 
be supported by consideration of the relation between the pressure distribution 
in the real flow and in an inviscid flow with the same boundaries and a free 
streamline leaving the surface at  the separation point. In  the real flow the 
pressure near the separated layer soon becomes constant, since it encloses 
stagnant fluid of negligible kinetic energy, and this pressure is the pressure on 
the free streamline of the inviscid fl0w.t The surface distribution of pressure in 
the inviscid flow will be very nearly the same as the distribution in the real flow 
well upstream of separation, where the layer thickness is small and also well 
downstream where the fluid is stagnant, but not near the separation point. There 
the rapid increase of boundary-layer thickness displaces streamlines in the 
effectively inviscid flow outside the layer and may cause appreciable pressure 
differences across the layer itself. The changes in wall pressure depend on addi- 
tional curvature of streamlines consequent on growth of the boundary layer 
and, since the growth is determined by the real pressure distribution and by the 
parameter describing the initial layer, the real pressure distribution is a function 
of the inviscid distribution and these parameters. But the differences are 
appreciable only in the immediate neighbourhood of the separation point and 
so depend only on flow conditions near this point. In  this restricted region, the 
inviscid pressure distribution is approximately one with constant pressure 
gradient, (dPldx),, to the separation point and zero gradient beyond it. In  the 
non-dimensional form required by the preceding theory of layer development, 
this means that 

where C, rather than x is used as the independent variable, and C,> $, the pressure 
coefficient a t  separation, specifies the pressure on the free streamline. To the 
approximation that (dP/dx)i may be regarded as constant, the real pressure 

t Notice that the inviscid flow is determined by the flow boundaries, the position of 
separation and the pressure on the free streamline. 
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gradient approaches this value upstream of the separation point and zero 
downstream. Combining equation (5.1) with the zero-stress criterion, which 
expresses pressure coefficient at  separation as a function of pressure gradient at  
separation, it follows that 

and that 
v dP 
- - =f[y-2Cp, y-"p,,]. 
7% ax 

(5 .2)  

(5.3) 

These arguments depend on the experimental observation that layer thick- 
ening exerts an appreciable effect on the pressure gradient only in theneighbour- 
hood of separation and this phenomenon probably depends on the close connexion 
between pressure gradient and displacement thickness for small values of the 
stress ratio. For these small values, the contribution of the inner layer to the 
displacement thickness is 

where I u - -  - ;; [ log-++-2(1-B) ;! . 
The contribution from the outer layer varies slowly with position and does not 
depend directly on the stress gradient, a. From (5.4) it  follows that a decrease in 
pressure gradient, which is an upper bound to the stress gradient, causes a corre- 
sponding increase in displacement thickness whose effect is to make the pressure 
gradient still smaller. Once this contribution to the thickness is large enough 
to change the pressure gradient appreciably, the layer is likely to become un- 
stable with respect to downstream development and to thicken at a rate not 
controlled by outside influences. It is also likely that this runaway development 
begins at  some critical value of the stress ratio and that a layer allowed to 
develop past this stage must separate.? Indeed, equation (5.4) shows that, at  
this stage of development, weakening of the gradient by external action merely 
accelerates the layer thickening. 

If  these conclusions are correct, the criterion for separation may be expressed 
in the form ( 5 . 2 )  as a dependence of pressure rise to separation on the inviscid 
pressure gradient just upstream of the separation point. The dependence could 
be established by measuring pressure distributions in separating flows and from 
them inferring the characteristic pressure distributions implied by equation (5.3). 
In  figure 7, one such distribution is shown, calculated from the measurements of 
Schubauer & Klebanoff, with some conjectural curves for other values of 
~/7 ; (dP ldx )~ .  Evidently the dependence of v / ~ ! ( d P l d x ) ~  on Y - ~ C ~ , ,  must be 
similar to that of v/7t(dPldx),, and a possibility is that (dPldx), is a constant 
fraction of (dPldx),. A curve has been drawn using the fraction, 

Flow with continuously zero wall stress is a special case, dt/dx E 0, and these argu- 
ments are not inconsistent with its existence (Stratford 1959). They do imply transient 
separation before the zero-stress flow is established. 
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to agree with the measurements of Schubauer & Klebanoff at 

log - - = -7. ( 3 d  
From a curve of this kind, a condition for separation is defined in terms of 
pressure distribution in an inviscid flow. 

Although the effects of weakening of the pressure gradient can be described 
in this comparatively simple way, the problem of predicting separating flow in 
a system with specified boundaries is still difficult except in special circumstances. 
In  general, inviscid flows are possible with various points of separation of the 
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FIGURE 7. Characteristic pressure distributions in separating boundary layers. The curve 
for log[v/~! ( d P / d ~ ) ~ ]  = - 7 is taken from the measurements of Schubauer & Klebanoff 
(1951) but the other two are conjectural. The full line represents the zero-stress condition 
(4.11) and the broken line the suggested relation between C , ,  and ( d P / d ~ ) ~  (equation (6.2)). 

free streamline and various pressures on this streamline, and the problem 
consists of the determination of these two parameters. Since Cp,s and (dP/dz), 
are functions of these parameters, the criterion for separation (5.2) imposes a 
relation between them, but to decide which position of separation (and corre- 
sponding stagnant pressure) is the real one requires a knowledge of the behaviour 
of the separated layer downstream of the separation. In  some flows, the separated 
layer may extend far downstream and then the pressure in the stagnant region 
may be the pressure at  infinity, but usually the layer re-attaches itself either to 
the surface or, as in flows past cylinders, to another separated layer, forming a 
closed stagnant region. The work of Bourque (1959) and of Sawyer (1960) on 
the re-attachment of a jet issuing parallel to a flat plate suggests that the 
appropriate inviscid flow is one with a re-entrant free streamline and that the 
strength of the sink necessary for the re-entry is the total rate of entrainment 
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by the turbulent mixing layer which in the real flow occupies the position of the 
free streamline. The imposition of a condition of this kind would provide another 
relation between position of separation and stagnant pressure, and a single flow 
would be defined. 

Even if the conditions for closure of the stagnant region were established, the 
prediction of separating flow around a bluff body (e.g. a circular cylinder) would 
be far from easy but most of the difficulty disappears if the width of the region of 
separated flow is small compared with the extent of the region of pressure rise. 
This occurs in flow separating at  the rear of an aerofoil or in a diffuser of small 
angle. In  such flows, the inviscid pressure distribution up to the point of separa- 
tion depends little on the position of separation and the inviscid gradient (dP/dx), 
may be approximated by the value in the non-separating flow without serious 
error. 

6. Discussion 
The development of this theory may have given the impression that its 

assumptions are necessarily valid if the pressure gradient is large compared with 
the initial stress gradients, but by itself this condition ensures only that the outer 
layer has the required property of conserving total-head and Reynolds stress 
along streamlines. The conditions for an inner layer with the assumed structure 
are more complex and impose restrictions on the form of the pressure distribution 
as well as on the magnitude of the gradients. We may recall that the inner layer 
is the part of the flow in which the distributions of total-head and Reynolds 
stress have been strongly modified through increased production and dissipation 
of turbulent energy, and it is assumed that the product of this modification is 
a linear stress, equilibrium layer. However, the conditions for existence of an 
equilibrium layer are not necessarily satisfied over the whole inner layer as can 
be shown by considering the variation with x of the calculated stream function 
at the junction of the two layers. It is 

( 1 - B ) - - B  (6.1) 
l+ t  2t 1 7% [ (4$(1--t)7: 2 2 - t - 4t2 

21., = t( 1 - t2) aK 2 log - - - - )+A+;j  l + t  av t ( l + t )  

and, if d$,/dx < 0, streamlines through the junction points are emerging from the 
inner layer and total-head and Reynolds stress on them will not be the same as 
a t  the pressure minimum. In this event, the inner layer of modified flow ends 
further from the wall than the calculated distance, y8 = 7,,/a, and the equi- 
librium layer forms only a part of it. In  practice, shallow excursions of a stream- 
line into the inner layer will not change stress and total-head by significant 
amounts and the identification of the inner and equilibrium layers is still possible 
if negative values of dlC.,/dx are small compared with $s/(xs - x,,). It is interesting 
that this condition can be met only if the stress gradient decreases rapidly as 
the wall stress approaches zero and that this decrease is a condition for validity 
of the basic assumptions as well as a consequence of them. 

The more usual methods of predicting layer development in adverse pressure 
gradients depend on the equation for the momentum integral and on pro- 



554 A .  A .  Townsend 

cedures for relating the velocity distributions to the wall stress and a shape- 
parameter. The Stratford approach postulates a particular stress distribution, 
linear in the inner layer and ‘frozen’ in the outer layer, and deduces a velocity 
distribution consistent with it, thus satisfying automatically the momentum- 
integral equation. One advantage of this approach is that the boundary-layer 
approximation need be valid only within the inner layer, where flow velocities 
and curvatures are small and where pressure is less likely to change with distance 
from the wall. Another advantage, pointed out by Stratford (1959), is that the 
influence of Reynolds number and thickness of the initial layer on separation is 
easily found. In  terms of the ‘inviscid ’ pressure gradient, the criterion for zero 
stress is 

(6.2) 

log [? (z)j aP = - @+4(1 --B).)& -log [ rT+ 4(1 -BIZ 
Y 

obtained from equation (4.1 1) by inserting the speculative relation (5.4). At 
constant Reynolds number, the left-hand term varies slowly with the friction 
parameter y, related to layer thickness by Uo80/v = l/KyeY-l-a, and so Cp,s is 
nearly proportional to y2, i.e. to the initial coefficient of skin friction. Next, 
defining xo as the distance from the leading-edge of a flat plate in a stream of 
velocity Vo at which the skin friction has the value at  the pressure minimum 
and using the relation (Townsend 1956) 

the criterion becomes 

Unless the position of transition changes considerably, xo should not vary 
appreciably with Reynolds number of the flow, and, to a fair approximation in 
any particular flow, the difference from unity of the pressure rise coefficient 
at  separation is proportional to y, i.e. to the square root of the initial friction 
coefficient. 
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